The generator matrix

 1  0  1  1  1  0  1  1  0  1  0  1  1  1  0  0  1  1  1  1  1  1  0  1  1  X  1  1  0  1  0  1  X  1  1  1  X  1  X  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  X  1  X  1  1  0  1  1  1  1  1  0  1  1  1  X  1  X  1  1  1  1  1  0  0  X  1  1  0
 0  1  1  0  1  1  0 X+1  1 X+1  1  0  0 X+1  1  1 X+1  0  X  0  X X+1  1  0  1  1  0 X+1  1  X  1  1  1  0  1 X+1  1  1  1  X  0  X  X X+1  1  0  X  0  0  X  X  X  X  0  1  1  X  0  0  X  X  X  0 X+1  1 X+1  1  X  0 X+1  X X+1  0 X+1  X X+1  X  0  1  1  X  0  X  X
 0  0  X  0  0  0  0  0  X  X  X  0  X  0  X  0  X  X  X  0  X  0  X  0  X  0  X  0  X  X  0  0  0  X  X  X  X  X  X  0  0  X  0  0  0  0  X  X  X  0  X  X  X  X  0  0  X  X  X  X  0  0  0  X  0  0  X  0  0  0  X  X  X  0  0  0  X  X  0  X  X  X  0  X
 0  0  0  X  0  0  0  0  0  0  0  0  0  X  X  X  X  X  0  0  0  X  X  0  X  X  0  X  0  X  0  0  X  X  0  X  X  X  X  X  X  X  X  X  X  X  X  0  X  X  X  X  0  0  0  0  0  0  X  0  0  0  0  0  X  0  X  0  X  0  0  X  0  0  X  X  X  X  0  0  X  0  0  0
 0  0  0  0  X  0  0  X  X  0  X  0  X  0  X  X  0  0  0  X  X  X  0  X  X  0  X  X  0  X  X  0  0  0  X  0  X  0  X  X  X  X  0  X  0  0  X  0  X  0  0  0  X  X  X  0  X  X  X  0  0  X  0  0  X  0  0  X  X  0  X  X  0  0  X  0  0  X  X  0  0  0  0  0
 0  0  0  0  0  X  0  X  0  X  X  X  0  X  0  0  X  0  0  X  X  X  0  0  X  0  0  0  0  X  X  X  0  X  0  0  X  X  0  X  0  0  X  X  X  X  0  0  X  0  X  0  0  X  X  X  0  X  0  0  X  0  X  0  X  X  0  0  X  0  0  X  X  0  0  0  X  0  0  X  X  0  X  0
 0  0  0  0  0  0  X  0  0  0  0  X  X  X  0  X  0  X  X  X  0  X  0  X  0  X  0  0  X  X  0  0  0  X  X  0  0  0  0  X  X  X  0  0  0  X  0  X  0  X  X  X  X  0  0  0  0  X  X  0  X  X  0  X  0  X  X  0  X  0  X  X  0  X  X  0  0  0  0  X  X  0  X  0

generates a code of length 84 over Z2[X]/(X^2) who�s minimum homogenous weight is 78.

Homogenous weight enumerator: w(x)=1x^0+74x^78+105x^80+82x^82+56x^84+62x^86+55x^88+22x^90+24x^92+11x^94+13x^96+3x^102+1x^110+1x^112+1x^118+1x^120

The gray image is a linear code over GF(2) with n=168, k=9 and d=78.
This code was found by Heurico 1.16 in 3.88 seconds.